Timing in the written production of German compounds

Guido Nottbusch1, Angela Grimm2 & Rüdiger Weingarten1

1University of Osnabrueck, Germany
2University of Groningen, The Netherlands
General Method

Measuring the time course of writing can give insights into the processes of word production after the initiation of writing.
General Method: *Controlled influences*

- typing skill
- keyboard layout
- motor patterns
- letter context
- grapheme and bigram frequency
- ...

DGfS 2003 Nottbusch/Grimm/Weingarten: Timing in the written production of German compounds
General Method

- SM: hin-durch
- S: Lin-de
- L: Kin-d

<table>
<thead>
<tr>
<th>characters</th>
<th>h</th>
<th>i</th>
<th>n</th>
<th>d</th>
<th>u</th>
<th>r</th>
<th>c</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
General Method

The bigram <nd> is present in all stimuli.

Syllable & Morpheme boundary are influenced by word frequencies

Syllable boundary

Letter boundary

The bigram <nd> is present in all stimuli.
Introduction

• Only syllable and morpheme boundaries are influenced by word-frequencies (SM-effect) (Will, et al., 2003).

• Word frequency effects are considered as evidence for lexical access to the word form (Jescheniak & Levelt, 1994).
Introduction

Alternative explanations for the SM-effect

- composition: complex words are constructed from their morphemes
- holistic access: complex words are accessed as their whole word form

In current models both routes are available and compete (e.g. Caramazza et al., 1988) or can converge on a single representation (Baayen & Schreuder, 1999).
Method: What we measure

Method: What we measure

Post fach

IKI t

POST T F A C H

DGfS 2003 Nottbusch/Grimm/Weingarten: Timing in the written production of German compounds
Method: *What we want to know*

Mental Lexicon

P O S T F A C H

IKI

t
Method: *Possibility 1*
Method: *Possibility 2*
Method

Lexical effects

- relative frequency (Hay, 2000)
- semantic transparency
- productivity
- phonological transparency
- graphotactic probability (prelexical)
- ...

DGfS 2003 Nottbusch/Grimm/Weingarten: Timing in the written production of German compounds
Method: *Stimuli dimensions*

Stimuli: German compounds were varied in three dimensions:

1. **relative frequency** (relation between the frequency of the whole word and the frequency of the base)
2. **frequency level**
3. **semantic transparency**
Method: Stimuli

Stimuli dimension 1: relative frequency

Postfach > Fach
Kotflügel < Flügel
Method: Stimuli

Stimuli dimension 2: Frequency level

Stimuli

- **Post**
 - $\text{wwFreq} = 696$
 - $\text{baseFreq} = 72$

- **Kot**
 - $\text{wwFreq} = 7$
 - $\text{baseFreq} = 106$

- **Schrot**
 - $\text{wwFreq} = 3$
 - $\text{baseFreq} = 1$

- **Licht**
 - $\text{wwFreq} = 0$
 - $\text{baseFreq} = 22$

Note:
- The stimuli are divided into two dimensions: frequency level and baseline frequency. The arrows indicate the direction of the stimulus presentation.
Method: Stimuli

Stimuli dimension 3: Semantic transparency level

- **intrans**
 - Kot
 - flügel
 - Rating: 4.6
 - Std. Dev.: 0.5

- **trans**
 - Licht
 - filter
 - Rating: 1.8
 - Std. Dev.: 0.4
Method: Stimuli Distribution

- +wwFreq-Hi-intrans
 - n=16
 - 25
- +wwFreq-Hi-trans
 - n=9
- +wwFreq-Lo-intrans
 - n=13
 - 51
- +wwFreq-Lo-trans
 - n=13

- +baseFreq-Hi-intrans
 - n=22
 - 52
- +baseFreq-Hi-trans
 - n=30
- +baseFreq-Lo-intrans
 - n=20
 - 52
- +baseFreq-Lo-trans
 - n=32
Method: Procedure

Procedure:

• Stimuli appeared in a randomised fashion in the upper half of a 19” computer screen.

• Participants were instructed to read the stimulus and to type the word on the keyboard as fast as possible without errors.

• Simultaneously, with the typing of the first letter of the target word, the stimulus disappeared from the screen, i.e. viewing times were self paced.
Method: Participants

Participants:

- 45 students of the University of Osnabrueck.
- All were native speakers of German.
- All were able to type fluently, although no strict criteria were applied (average writing speed: 46.0 words/min, std.dev.: 8.4).
- 34 female, 11 male.
- Mean age: 25.9 years, std.dev.: 3.6
- 42 students were right-handed, 3 left handed.
Results: Statistical issues

- Mistyped words (13.2%) and values exceeding 2.5 standard deviations of the mean IKI of the participant/item (4.2%) were discarded from the analysis.
- Original measurements were averaged over subjects.
Results

Mean SM-InterKey Intervals in +whole-word frequency vs. +base frequency compounds

![Graph showing mean SM-InterKey Intervals in +whole-word frequency vs. +base frequency compounds with values 342 and 352.](image-url)
Results

Mean SM-InterKey Intervals in high vs. low +whole-word frequency and +base frequency compounds

<table>
<thead>
<tr>
<th>Condition</th>
<th>Mean (ms)</th>
<th>Std Dev. (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>high +wwFreq</td>
<td>320</td>
<td></td>
</tr>
<tr>
<td>low +wwFreq</td>
<td>362</td>
<td></td>
</tr>
<tr>
<td>high +baseFreq</td>
<td>347</td>
<td></td>
</tr>
<tr>
<td>low +baseFreq</td>
<td>357</td>
<td></td>
</tr>
</tbody>
</table>

+whole word Frequency items +base Frequency items
Results

Mean IKIs in semantically transparent vs. intransparent and high vs. low +whole-word frequency compounds

![Chart showing mean IKIs in ms for semantically transparent and intransparent compounds with high and low whole-word frequency. The chart includes bars for 'intrans' and 'trans' categories with high and low whole-word frequency.]

Mean IKIs ± Std.Dev. in ms

- Intrans: high +whole word freq = 313 ms, low +whole word freq = 344 ms
- Trans: high +whole word freq = 332 ms, low +whole word freq = 381 ms
Results

Relative effect sizes (η^2) for +whole word Freq items

- Error: 66.3%
- High/low: 31.4%
- (in-)trans: 1.8%
- High/low*: 0.5%
- (in-)trans: 0.5%
Results

Mean IKIs in semantically transparent vs. intransparent and high vs. low +base frequency compounds
Results summary

• In the overall comparison, no significant influence of relative frequency was found.

+whole word Frequency

Post fach

IKI

t

+base Frequency

Kot flügel

IKI

t

slightly (non-sig) faster than
Results summary: Frequency level

- A significant effect of frequency was found in compounds with whole word frequency being higher than the base frequency.

- No effects were found in items with base frequency being higher than the whole word frequency.
Results summary: Transparency

- All SM-IKI mean values in semantically intransparent items were faster than those of the semantically transparent items.
- But no significant effect of transparency was found.
Discussion

• The level of whole-word frequency affects timing of within word typing.
• The level of base frequency has no significant effect.

We conclude that we are not dealing with compositional effects but with a re-access of the whole-word form.
Discussion

[Diagram showing the sequence of words: Post, fach, and the word IKI]
Discussion

- The non-significant but consistent effect of transparency may reflect semantic influences occurring during the whole word form access.
Discussion
Timing in the written production of German compounds

Contact:
Guido.Nottbusch@uos.de
a.grimm@let.rug.nl
Ruediger.Weingarten@uos.de
References

